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A time-dependent model of the regime of moistening in the rootage layer of ameliorated soil is presented. It
is based on the solution of a differential equation for the capillary potential of moisture transfer in the zone
of soil aeration. The motion of moisture from the surface of groundwater into the layer of active moisture
transfer of the aeration zone determines the aqueous-physical properties of soil, the moisture saturation de-
gree of this layer, and the position of the groundwater level. The motion of soil moisture is characterized by
an unsteady regime in which the moisture content changes not only with depth, but also in time.

A flux of moisture U feeding soil in the zone of aeration from the groundwater level is considered in [1],
where the differential equation of steady-state motion of moisture in soil was used:

U = − λ 
∂
∂z

 (F − gz) . (1)

The moisture conductivity coefficient can be represented by the exponential dependence [1]

λ = λ0 exp (wF) . (2)

A constituent of the general time-dependent mathematical polder system model considered in [2] is the model [3] of
the regime of moistening in the rootage layer of ameliorated soils, which is based on calculation of the capillary mois-
ture-transfer potential in the aeration zone.

To calculate a moisture flux U, we write a partial differential equation for the capillary moisture potential F
with allowance for Eq. (1) in the form [2, 4]
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Initial and Boundary Conditions. As the initial conditions for the function of the moisture capillary potential
F represented by Eq. (4) a linear function was specified so that on the soil surface (z = H) F = 0 and on the ground-
water surface (z = 0) the value of the function F corresponded to a certain value of moisture flux equal to Umax (de-
termined below).

The boundary conditions on the soil surface were prescribed depending on the values of total evaporation E,
intensity of precipitation X, etc. In these calculations, evaporation fluxes E and those of atmospheric precipitation X
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were taken equal to zero. An explicit expression for the derivative of the capillary potential of moisture F over the
coordinate z from Eq. (1) is written as follows:

∂F

∂z



z=H

 = 
E − X

λ
 − g . (5)

From this relation it follows that the boundary conditions on the soil surface are prescribed in the form of the values

of the derivative 
∂F

∂z



z=H

 which takes into account the fluxes of total evaporation and atmospheric precipitation, as well

as the gravitational potential.
The specification of the values of boundary conditions for the capillary potential at a ground water level is

more complex than at the boundary with the soil [1, 2]. The author’s investigations [1] of the value of a maximum
moisture flux Umax with measurement of the potential F and other characteristics of heat and moisture conductivity
and on the basis of the potential theory of moisture transfer have shown the following. The major factor which deter-
mines the properties of the soil of a drained area by maximum moisture transfer into the zone of aeration is the po-
sition of the level of ground water H and the depth of rootage zone h (see Fig. 1). Here, the highest possible moisture
flux Umax into the aeration zone is approximately determined by the following dependence [1]:

Umax = a (H − h)3
 + b (H − h)2

 + c (H − h) + d ,   Umax ≥ 0 . (6)

For peat soils of a hypnosegde back bog at peat decomposition of about 40% the values of these coefficients [1] are
tabulated.

The capillary moisture potential on the surface of groundwater can be represented by the partial derivative

∂F

∂z



z=0

 as

∂F
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z=0

 = 
Umax

λ0
 − g . (7)

Numerical Methods of Solving the Equation. To solve the boundary-value problem (4), (5), (7), we will
avail ourselves of the pivot method. From Eq. (4) we go over to finite-difference equations. For this purpose, we dis-
cretize the problem, i.e., we introduce uniform grids in the variables z and t:

0 = z0 < z1 < ... < zn−1 < zn = H , (8)

Fig. 1. Schematic diagram of soil-ground with indication of the coordinate sys-
tem and acting fluxes of overall evaporation E, atmospheric precipitation X ,
and acceleration g.
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where zi = iδ, δ = H ⁄ n, i = 0, 1, ..., n. We define Fi = F(zi):

0 = t0 < t1 < ... < tk−1 < tk = T , (9)

where tj = jτ, τ = T ⁄ k, j = 0, 1, ..., k. We define the value of the moisture potential at the ith node and on the jth
time layer as Fij = F(zi, tj).

We replace the initial partial differential equation of parabolic type (4) by a finite-difference one at inner
nodes according to the divergent scheme (on the difference scheme the conservation laws hold):

Fi,j+1 − Fi,j

τ
 = 

1

2δ2 

(λi+1 + λi) (Fi+1,j+1 − Fi,j+1) − (λi + λi−1) (Fi,j+1 − Fi−1,j+1)


 − gλiw 

Fi,j+1 − Fi−1,j+1

δ
 ,

where i = 1, 2, ..., n − 1, j = 0, 1, ..., k − 1. These equations are brought to the explicit canonical three-diagonal form

AiFi+1,j+1 − BiFi,j+1 + CiFi−1,j+1 = − Di , (10)

where Ai = 
(λi + λi+1)

2δ2 ; Ci = 
(λi + λi−1)

2δ2  − 
gλiw

δ
; Bi = Ai + Ci + 

1

τ
; Di = 

Fi,j

τ
.

We note that the stability criterion of computation by the pivot method against errors of rounding is met,
since

Bi − (Ai + Ci) = 
1
τ

 > 0 , (11)

and this means that the resulting divergent difference scheme (10), which describes the initial differential equation (4),
is by all means stable and approximates it with the first order of accuracy in time and with the second one over the
coordinate.

The solution of the equation for the capillary potential (4) after it was reduced to a tridiagonal form (10) is
realized [2, 3] by the pivot method. Here, the sought-for discrete function Fi,j+1 is calculated from the recurrent for-
mula (oppositely directed pivots)

Fi,j+1 = Qi+1Fi+1,j+1 + Pi+1 ,   i = n − 1, ..., 1, 0 , (12)

where the pivot coefficients Qi+1 and Pi+1 are determined with the direct course i = 1, ..., n − 1:

Qi+1 = 
Ai

Bi − CiQi
 ,   Pi+1 = 

CiPi + Di

Bi − CiQi
 . (13)

As follows from recurrent relations (13), for the start of calculation we must have the values of Q1 and P1, which are
determined with the aid of the left boundary condition (7) at z0:

F1,j+1 − F0,j+1

δ
 = 

Umax

λ0
 − g   or   F0,j+1 = F1,j+1 − δ 





Umax

λ0
 − g




 . (14)

The coincidence of the recurrent relation (12) at i = 0 with expression (14) is satisfied only under the following con-
ditions:

Q1 = 1   and   P1 = − δ 




Umax

λ0
 − g




 . (15)
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The right boundary condition (5) at zn is used for the reverse course of i = n − 1, ..., 1, 0 from Eq. (12), as
a result of which the sought-for function of the capillary potential of moisture F is calculated:

Fn,j+1 − Fn−1,j+1

δ
 = 

E − X

λn
 − g . (16)

By simultaneously solving the system of equations formed by relations (16) and (12) at i = n − 1, we determine the
value of the capillary potential Fn,j+1 on the right boundary of the computational domain and the next time layer:

Fn,j+1 = 

δ 




E − X

λn
 − g




 + Pn

1 − Qn
 . (17)

The given algorithm can be easily realized in any algorithmic language and is the computationally stable,
most effective, and economic method of solution of partial differential equations of parabolic type and takes into ac-
count the initial and boundary conditions. Using Eq. (1), from the calculated space-time distribution of the capillary
potential F we may calculate the values of the flux of moisture:

Ui = − λi 
Fi+1,j+1 − Fi−1,j+1

2δ
 + λig ,   i = 1, ..., n − 1 . (18)

The values of the moisture flux U at boundary points at z = 0 and z = H are also calculated from Eq. (18) on replac-
ing the central difference derivative by the left and right difference products, respectively.

Results of Numerical Calculations. In carrying out numerical calculations of the values of the capillary po-
tential F and moisture flux U, the most complex is the assigning of the numerical values of the moisture conductivity
coefficient λ [1, 4], which depend on the properties of the soil and the amount of moisture stored in it. The conduc-
tivity potential coefficient (moisture diffusion in the zone of aeration) determines the property of the soil-ground of the
aeration zone and serves as the coefficient of proportionality between the moisture flux density and humidity gradient.
In [5], for peat soils the value of the coefficient of filtration Kf is approximately equal to 5.0–0.2 m/day, whereas the
value of the moisture conductivity coefficient λ lies in the range 0.020–0.003 m2/day.

In the present work the moisture conductivity coefficient λ was assigned, just as in [1], in the form of the
exponential dependence (2), with λ0 =  101.0 cm2/day. The calculations were performed for the conditions of shallow
bogs underlined by fine-grained sand (all cultures) [1] with the ground water level H = 70 cm and depth of rootage
zone h = 40 cm.

Figure 2 presents the calculated values of the capillary potential of moisture F for three moments of time: 1)
1.5 day; 2) 5 days; 3) 10 days. Equation (18) allows one to calculate the values of moisture flux U into the aeration

Fig. 2. Calculated dependences of capillary potential F on the height z for
three time moments: 1) 1.5 day; 2) 5 days; 3) 10 days. F, cm2/day2; z, cm.
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zone. The distributions of the moisture flux U over the height for the three time moments are presented in Fig. 3. The
value of the moisture flux feeding the rootage zone U0 = 56.7 cm3/day3 at the groundwater level (at z = 0) was cal-
culated from Eq. (6), with the values of the coefficient for this equation being taken from Table 1.

It should be noted that at a constant groundwater level H and constant feeding moisture flux U0 from the
groundwater level, the values of the capillary potential F and of the moisture flux U increase with time (see Figs. 2
and 3). The capillary potential function F of the variable z has an explicit exponential character (Fig. 2). At the same

TABLE 1. The Values of the Coefficients in Eq. (6)

Character of the surface a b c d
Limitations

ξ = H − h U0

Open soil –0.0007 0.102 –5.37 111.2 10 ≥ ξ ≤ 65 67

Deep bogs:

springcrops 0 0.0113 –2.26 115.0 10 ≥ ξ ≤ 95 94

perennial herbs 0.00015 –0.02 –0.6 90.0 0 ≥ ξ ≤ 90 90

potatoes –0.0005 0.092 –5.78 134 10 ≥ ξ ≤ 90 85

Shallow bogs underlay a by a finely
granular sand 0.0001 –0.02 –0.6 90.0 0 ≥ ξ ≤ 90 90

Fig. 3. Calculated dependences of moisture fluxes U corresponding to the cap-
illary potential values given in Fig. 2. The values for 1–3 are the same as in
Fig. 2. U, cm3/day3; z, cm.

Fig. 4. Calculated dependences of moisture fluxes U on the coordinate z for the
groundwater level H = 150 cm. The values for 1–3 are the same as in Fig. 2.
U, cm3/day3; z, cm.

Fig. 5. Calculated values of the moisture conductivity coefficient. λ, mm2/day;
z, cm.
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time, the feeding flux of moisture U during the first day also has an exponential dependence, but already by the be-
ginning of the 10th day it becomes linear (Fig. 3, curve 3), which is attributable to the isotropicity of the soil-ground.

To elucidate the role of the groundwater level in the distribution of moisture flux over the height we will
consider the results of calculations of moisture flux U for the groundwater level H = 150 cm which are presented in
Fig. 4 (in Fig. 3 H = 70 cm). We note that in these calculations the feeding flux of moisture U0 from the groundwa-
ter level was prescribed the same as for calculations with the groundwater level equal to H = 70 cm (see Fig. 3).

As was expected, a comparison of the height dependences of moisture fluxes U for different values of
groundwater levels which are presented in Figs. 3 and 4 (in the rootage zone 0–40 cm) shows that the redistribution
of the moisture flux over the height occurs with an appreciable decrease in the values of U in the groundwater level,
and thus there occurs depletion of moisture in the soil of the rootage zone. The capillary transfer of moisture from the
groundwater level into the aeration zone is determined not only by the position of groundwater, but also by the value
of the moisture conductivity coefficient λ. However, it should be noted that the structure of the dependence of mois-
ture flux on different positions of the groundwater level for different numerical values of the moisture conductivity co-
efficient is preserved, and only numerical values of the flux of moisture transfer are changed.

As it follows from the analysis of the height dependence of λ given in Fig. 5, here the height behavior of the
capillary potential F is repeated (see Fig. 2) with account for its exponential dependence. At the present time there is
very limited information on the numeral values of the moisture conductivity coefficient [1–3] for various soil-grounds,
and further experimental investigations in this area are needed. Figures 6 and 7 present the time dependences of the
capillary potential F and moisture fluxes U for different heights from the groundwater level. It is seen from these fig-
ures that the values of F and U increase with time exponentially for all the values of z.

The feeding moisture flux U from the surface of the groundwater level into the aeration zone in the first day
(see Fig. 7) increases to the utmost and then attains some stationary values which are different for different heights.

Thus, water catchment areas of polder systems are distinguished by small areas and great bogging of the
surface and ground sinks from cultivated bogs. Investigations on water catchment areas of the drainage system of
Belarus show that in frosty winters low cultivated bogs freeze through to a great depth [1]. During mild winters and
with deep snow cover the depth of freezing decreases considerably, and often there is no continuous freezing, and
by the beginning of snow melting the lowest groundwater levels are set as well as a large accumulating capacity in
the aeration zone, the presence of which may retain up to 100–170 mm of melt water [6]. In years with slight
freezing of peat soil with sufficient water penetrability and moisture capacity the melt water is spent to feed soil and
groundwaters, and the spring sink is mainly formed as a ground sink and does not lead to heavy floods. Under the
conditions of frozen soil and intense snow melting an intense surface sink is observed, and the draining network of
polder systems favors more rapid sink into conducting open channels, thus increasing the maximum flow rate in
them. Therefore, it is important to be able to solve the problems of mathematical simulation and prediction of the
saturation of soil with moisture not only from the viewpoint of the vegetation of plants but also formation of sinks
from the areas being drained [7].

Fig. 6. Time dependence of the capillary potential F for three values of the
height z: 1) 1.75; 2) 17.5; 3) 26.25 cm. F, cm2/day2; z, cm; t, day.

Fig. 7. Time dependence of the moisture fluxes U for three values of the
height z: 1) 1.75 cm; 2) 17.5; 3) 26.25 cm. U, cm3/day3; z, cm; t, day.
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NOTATION

Ai, Bi, Ci, Di, coefficients; E, moisture flux spent on evaporation, cm3/day3; F, capillary potential of soil
moisture, cm2/day2; g, free fall acceleration, cm/day2; H, groundwater level, cm; h, depth of rootage zone, cm; i, num-
ber of spatial node; j, number of a temporal layer; Kf, coefficient of filtration, cm/day; k, number of temporal layers;
n, number of spatial nodes; P, Q, pivot coefficients of the equation given; T, final time of the process; t, current time
of the process; U, moisture flux, cm3/day3; U0, constant feeding flux of moisture from groundwater, cm3/day3; Umax,
maximum moisture flux, cm3/day3; w, constant for the given type of soil, day2/cm2; X, flux of moisture from atmos-
pheric precipitation, cm3/day3; z, coordinate of the axis by which moisture flux (from groundwater level to soil sur-
face) is calculated, cm; δ, step of spatial computational grid; λ, moisture conductivity coefficient, cm2/day; λ0,
moisture conductivity coefficient at F = 0, cm2/day; τ, step of temporal computational grid. Subscripts: max, maxi-
mum; f, filtration.
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